2 00 1 Curvature , Covering Spaces , and Seiberg - Witten Theory

نویسنده

  • Claude LeBrun
چکیده

We point out that there are compact 4-manifolds which do not admit metrics of positive scalar curvature, but nonetheless have finite covering spaces which do carry such metrics. Moreover, passing from a 4-manifold to a covering space sometimes actually changes the sign of the Yamabe invariant. As was first pointed out by Bérard Bergery [1], there exist, in dimensions ≡ 1 or 2 mod 8, n ≥ 9, certain smooth compact manifolds M which don’t admit metrics of positive scalar curvature, but which nonetheless have finite coverings that do admit such metrics. For example, let Σ be an exotic 9sphere which does not bound a spin manifold, and consider the connected sum M = (S × RP)#Σ. On one hand, M is a spin manifold with nonzero Hitchin invariant â(M) ∈ Z2, so [5] there are harmonic spinors on M for every choice of metric; the Lichnerowicz Weitzenböck formula therefore tells us that no metric on M can have positive scalar curvature. On the other hand, the universal cover M̃ = (S2×S7)#2Σ of M is diffeomorphic to S × S, and so admits positive scalar metrics — e.g. the standard product metric. The purpose of this note is to point out that the same phenomenon occurs in dimension 4. Moreover, passing from a 4-manifold to one of its covering spaces can even change the sign of the Yamabe invariant. Recall that Yamabe ∗Supported in part by NSF grant DMS-0072591.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Seiberg–witten Invariants of Manifolds with Wells of Negative Curvature

A 4-manifold with b+ > 1 and a nonvanishing Seiberg–Witten invariant cannot admit a metric of positive scalar curvature. This remarkable fact is proved [18] using the Weitzenböck–Lichnerowicz formula for the square of the Spin Dirac operator, combined with the ‘curvature’ part of the Seiberg–Witten equations. Thus, in dimension 4, there is a strong generalization of Lichnerowicz’s vanishing the...

متن کامل

Ju l 2 00 3 Scalar Curvature , Covering Spaces , and Seiberg - Witten Theory

The Yamabe invariant Y(M) of a smooth compact manifold is roughly the supremum of the scalar curvatures of unit-volume constant-scalar-curvature Riemannian metrics g on M . (To be precise, one only considers those constant-scalar-curvature metrics which are Yamabe minimizers, but this technicality does not, e.g. affect the sign of the answer.) In this article, it is shown that many 4-manifolds ...

متن کامل

On the Riemannian Geometry of Seiberg-witten Moduli Spaces

We construct a natural L-metric on the perturbed Seiberg-Witten moduli spaces Mμ+ of a compact 4-manifold M , and we study the resulting Riemannian geometry of Mμ+ . We derive a formula which expresses the sectional curvature of Mμ+ in terms of the Green operators of the deformation complex of the Seiberg-Witten equations. In case M is simply connected, we construct a Riemannian metric on the S...

متن کامل

Four-Manifolds, Curvature Bounds, and Convex Geometry

Seiberg-Witten theory leads to a remarkable family of curvature estimates governing the Riemannian geometry of compact 4-manifolds, and these, for example, imply interesting results concerning the existence and/or uniqueness of Einstein metrics on such spaces. The primary purpose of the present article is to introduce a simplified, user-friendly repackaging of the information conveyed by the Se...

متن کامل

On Non-l 2 Solutions to the Seiberg–witten Equations

We show that a previous paper of Freund describing a solution to the Seiberg– Witten equations has a sign error rendering it a solution to a related but different set of equations. The non-L 2 nature of Freund's solution is discussed and clarified and we also construct a whole class of solutions to the Seiberg–Witten equations. § 1. Introduction With the introduction of the Seiberg–Witten equat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008